Lane detection is a challenging problem. It has attracted the attention of the computer vision community for several decades. Essentially, lane detection is a multifeature detection problem that has become a real challenge for computer vision and machine learning techniques. Although many machine learning methods are used for lane detection, they are mainly used for classification rather than feature design. But modern machine learning methods can be used to identify the features that are rich in recognition and have achieved success in feature detection tests. However, these methods have not been fully implemented in the efficiency and accuracy of lane detection. In this paper, we propose a new method to solve it. We introduce a new method of preprocessing and ROI selection. The main goal is to use the HSV colour transformation to extract the white features and add preliminary edge feature detection in the preprocessing stage and then select ROI on the basis of the proposed preprocessing. This new preprocessing method is used to detect the lane. By using the standard KITTI road database to evaluate the proposed method, the results obtained are superior to the existing preprocessing and ROI selection techniques.