2013
DOI: 10.1117/12.2015944
|View full text |Cite
|
Sign up to set email alerts
|

Real-time low-power neuromorphic hardware for autonomous object recognition

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2014
2014
2015
2015

Publication Types

Select...
3
2

Relationship

2
3

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 2 publications
0
2
0
1
Order By: Relevance
“…A team led by HRL Laboratories, LLC (HRL) included participants from New York University, Johns Hopkins University, MIT, Brown University, Yale University, Argon ST and Imagize, LLC. Our team successfully developed a realtime, accurate, and low-power neuromorphic solution for automated object recognition in images and videos [2,3]. Our system called NIVA (Neuromorphic Image and Video Analysis) is an autonomous object recognition system based on a visual cognition architecture ( Fig.…”
Section: A Hrl's Neuromorphic Image and Video Analysis (Niva)mentioning
confidence: 99%
“…A team led by HRL Laboratories, LLC (HRL) included participants from New York University, Johns Hopkins University, MIT, Brown University, Yale University, Argon ST and Imagize, LLC. Our team successfully developed a realtime, accurate, and low-power neuromorphic solution for automated object recognition in images and videos [2,3]. Our system called NIVA (Neuromorphic Image and Video Analysis) is an autonomous object recognition system based on a visual cognition architecture ( Fig.…”
Section: A Hrl's Neuromorphic Image and Video Analysis (Niva)mentioning
confidence: 99%
“…The NEOVUS is implemented in COTS hardware to achieve real-time performance at low size, weight, and power (SWaP). Several components and capabilities of NEOVUS have been previously described by us Chen et al ( 2011 ), Khosla et al ( 2013a ), Khosla et al ( 2013b ), Honda et al ( 2013 ). This paper describes the complete system end-to-end, provides additional details of components and key capabilities, and describes in detail the results of DARPA evaluation on urban datasets.…”
Section: Introductionmentioning
confidence: 99%
“…Outras aplicações incluem o uso de DSPs, como em [26], no qual um sistema de classificação de imagens foi embarcado para a detecção automática de pequenos defeitos na confecção têxtil. Além disso, FPGAs têm sido também utilizados para embarcar algoritmos do estado da arte da classificação de imagens, como em [17], no qual os autores embarcaram uma rede neural convolucional (CNN, do inglês convolutional neural network ) [19] para detecção de objetos, resultando em um desempenho que permitiu classificar vídeo em tempo real. Entretanto, um ponto negativo dessas abordagens é a necessidade do uso de métodos especializados para a extração e/ou seleção de características, geralmente baseadas em métodos genéricos como transformada discreta de cossenos (DCT, do inglês discrete cosine transform), transformada discreta de Fourier (DFT, do inglês discrete Fourier transform), banco de filtros, Wavelets, ou mesmo exigindo conhecimento de um especialista na fase de pré-processamento [12].…”
Section: Contextualizaçãounclassified