FRET techniques have been widely used for measuring the dynamics of biomolecules because of its high sensitivity as a nanoscale distance sensor. Between two closely located fluorescent molecules, energy in an excited donor fluorescent probe is resonantly transferred to an adjacent acceptor fluorescent probe, thereby decreasing the donor's fluorescence intensity and increasing the acceptor's fluorescence intensity. The efficiency of this energy transfer is inversely proportional to the sixth power of the distance between the two fluorescent molecules. Accordingly, FRET is an extremely sensitive measurement system for detecting changes in the distance between two fluorescent probes, particularly around what is called the Förster distance, namely, a distance that yields a FRET efficiency of 0.5 (4-7 nm for a pair of typical fluorescent probes) (Lakowicz 2006). As such, FRET measurement is ideally suited for detecting changes in the distance between domains or subunits within a protein or nucleic acids during conformational changes. Moreover, based on the ratio of fluorescence intensities of two fluorescent molecules, it can achieve high signal-to-noise ratio in measurements of binding and dissociation reactions compared with measurements involving a single fluorescent molecule. These advantages have made FRET an extensively used technique for researching the dynamics of biomolecules. Conventional bulk FRET measurements, however, only yield mean measurement values of a large number of molecules. Therefore, these measurements are unable to extract information on the distribution of multiple molecules. The development of single-molecule imaging technologies, capable of distinguishing fluorescence intensities from individual molecules, has overcome this limitation. In combination with the single-molecule imaging techniques, FRET measurements are able to distinguish the state of each molecule in real time. This combination has