2023
DOI: 10.1049/itr2.12393
|View full text |Cite
|
Sign up to set email alerts
|

Real‐time passenger flow anomaly detection in metro system

Abstract: Real‐time passenger‐flow anomaly detection at all metro stations is a very critical task for advanced Internet management. Robust principal component analysis (RPCA) based method has often been employed for anomaly detection task of multivariate time series data. However, it ignores the spatio‐temporal features of regular passenger‐flow patterns, resulting in a decrease in the accuracy of anomaly detection. In this paper, RT‐STRPCA model integrating temporal periodicity and spatial similarity is proposed to ad… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 29 publications
0
0
0
Order By: Relevance