A machine learning approach has been implemented to measure the electron temperature directly from the emission spectra of a tokamak plasma. This approach utilized a neural network (NN) trained on a dataset of 1865 time slices from operation of the DIII-D tokamak using extreme ultraviolet / vacuum ultraviolet (EUV/VUV) emission spectroscopy matched with high-accuracy divertor Thomson scattering measurements of the electron temperature, T e . This NN is shown to be particularly good at predicting T e at low temperatures (T e < 10 eV) where the NN demonstrated a mean average error of less than 1 eV. Trained to detect plasma detachment in the tokamak divertor, a NN classifier was able to correctly identify detached states (T e < 5 eV) with a 99% accuracy (F 1 score of 0.96) at an acquisition rate 10× faster than the Thomson scattering measurement. The performance of the model is understood by examining a set of 4800 theoretical spectra generated using collisional radiative modeling that was also used to predict the performance of a low-cost spectrometer viewing nitrogen emission in the visible wavelengths. These results provide a proof-of-principle that low-cost spectrometers leveraged with machine learning can be used both to boost the performance of more expensive diagnostics on fusion devices, and be used independently as a fast and accurate T e measurement and detachment classifier.