2017 IEEE Sensors Applications Symposium (SAS) 2017
DOI: 10.1109/sas.2017.7894091
|View full text |Cite
|
Sign up to set email alerts
|

Real-time room occupancy estimation with Bayesian machine learning using a single PIR sensor and microcontroller

Abstract: Abstract-This paper presents the implementation and deployment of a compute/memory intensive non-parametric Bayesian machine learning algorithm on a microcontroller unit (MCU) to estimate room occupancy in a Smart Room using a single analogue PIR sensor. We envisage an IoT device consisting of a resource-constrained MCU, PIR sensor and a battery running the occupancy estimation algorithm and operating over days or months without recharging or replacing the battery. Both hardware-independent and hardware-depend… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
26
0
1

Year Published

2017
2017
2024
2024

Publication Types

Select...
8
2

Relationship

1
9

Authors

Journals

citations
Cited by 37 publications
(27 citation statements)
references
References 13 publications
0
26
0
1
Order By: Relevance
“…However, the switching AR model can be seen as an extension of the infinite HMM. Therefore, in order to perform real-time inference of the model on smartphone or wearable devices, we can use the computational optimisation proposed in Raykov et al [ 48 ] and Leech et al [ 64 ], which enables the inference of an infinite HMM on a highly resource-constrained microcontroller.…”
Section: Resultsmentioning
confidence: 99%
“…However, the switching AR model can be seen as an extension of the infinite HMM. Therefore, in order to perform real-time inference of the model on smartphone or wearable devices, we can use the computational optimisation proposed in Raykov et al [ 48 ] and Leech et al [ 64 ], which enables the inference of an infinite HMM on a highly resource-constrained microcontroller.…”
Section: Resultsmentioning
confidence: 99%
“…The occupancy sensing and estimation methods can also be categorized with sensors or measures used. Motion sensors-such as passive infrared (PIR), ultrasonic, and microwave sensors-have been widely employed because of their low cost and power consumption, small form factor, and the fact that they are nonintrusive and privacy-preserving [26,36,[47][48][49][50][51][52][53]. Especially, PIR sensors are popular for real applications as they are robust to interference caused by environmental variances [54].…”
Section: Existing Sensing and Estimation Technologiesmentioning
confidence: 99%
“…Wibisono dan Bayhaki [1] membahas pendekatan otomasi lampu jalan menggunakan adhoc network berbasis wireless connectivity; Leech et al [2] menekankan pendekatan optimisasi memory sistem pemantauan kondisi ruangan yang bekerja menggunakan algoritma Bayesian; Cynthia et al [3] membahas sistem otomasi perangkat listrik kelas menggunakan mikrokontroler Arduino tanpa adanya algoritma tertentu, menekankan pada ketiadaan aktivitas selama 10 menit didalam kelas sebagai sebagai penentu keputusan; dan Lee et al [4] membahas sistem tracking kendaraan berbasis mikrokontroler yang dipasang pada mesin kendaraan dengan mengirimkan data posisi perangkat GPS/GSM/GPRS yang terhubung dengan mikrokontroler ke database sistem monitoring.…”
Section: 131unclassified