Nowadays, the industrial waste, Fly Ash (FA), as a mineral admixture or a replacement of cement for the production of self-compacting concrete (SCC) has been increasingly used, because of its benefits in enhancing both fresh and long-term concrete properties and in promoting environmental-friendly construction. In this study, the conventional cement was replaced by FA at different rates (0%, 20%, 40%, 60% of the cement mass) for the SCC mixtures. The early-age (0–24 h) SCC hydration, which is a complicated chemical reaction in pozzolanic behavior, was characterized by using a pair of piezoceramic Smart Aggregates (SAs). One SA works as an actuator and the other works as a sensor. A sweep sine signal from 100 Hz to100 kHz was used as the excitation signal, which is helpful to understand the quantitative influence of fly ash on the kinetics of SCC hydration. During the hydration reaction, the received electrical signal was continuously detected by the sensor. The experimental results showed that increasing the volume of fly ash resulted in longer pozzolanic reaction time in SCCs, which successfully reveals the effect of fly ash volume on the hydration behavior in early age (0–24 h) hydration. In order to quantitatively evaluate the hydration in the 0–24 h, based on the wavelet packet energy analysis, the hydration completion index (HCI) and normalized hydration completion index (NHCI) were defined. The experimental results showed that the NHCI can clearly reveal the hydration completion progress during the early hydration age (0–24 h). To validate the accuracy of the test results based on SAs, a series of mechanical tests for penetration resistance of SCCs with different volumes of fly ash were carried out. The results predicted by the signal based on SAs gave reasonable agreement with the test results of penetration resistance. It can be concluded that a successful investigation of the influence of fly ash on early-age SCC hydration response can be achieved based on the analysis of the received electrical signal using the proposed method and the important hydration characteristics, such as initial and final setting time, and can be approximately predicted by NHCI values.