Severe acute respiratory infections (SARI) remain one of the leading causes of mortality around the world in all age groups. There is large global variation in epidemiology, clinical management and outcomes, including mortality. We performed a short period observational data collection in critical care units distributed globally during regional peak SARI seasons from 1 January 2016 until 31 August 2017, using standardised data collection tools. Data were collected for 1 week on all admitted patients who met the inclusion criteria for SARI, with follow-up to hospital discharge. Proportions of patients across regions were compared for microbiology, management strategies and outcomes. Regions were divided geographically and economically according to World Bank definitions. Data were collected for 682 patients from 95 hospitals and 23 countries. The overall mortality was 9.5%. Of the patients, 21.7% were children, with case fatality proportions of 1% for those less than 5 years. The highest mortality was in those above 60 years, at 18.6%. Case fatality varied by region: East Asia and Pacific 10.2% (21 of 206), Sub-Saharan Africa 4.3% (8 of 188), South Asia 0% (0 of 35), North America 13.6% (25 of 184), and Europe and Central Asia 14.3% (9 of 63). Mortality in low-income and low-middle-income countries combined was 4% as compared with 14% in high-income countries. Organ dysfunction scores calculated on presentation in 560 patients where full data were available revealed Sequential Organ Failure Assessment (SOFA) scores on presentation were significantly associated with mortality and hospital length of stay. Patients in East Asia and Pacific (48%) and North America (24%) had the highest SOFA scores of >12. Multivariable analysis demonstrated that initial SOFA score and age were independent predictors of hospital survival. There was variability across regions and income groupings for the critical care management and outcomes of SARI. Intensive care unit-specific factors, geography and management features were less reliable than baseline severity for predicting ultimate outcome. These findings may help in planning future outbreak severity assessments, but more globally representative data are required.