Watermarking is widely employed to protect audio files. Previous research has focused on developing systems that balance performance criteria, including robustness, imperceptibility, and capacity. Most existing systems are designed to work with pre-recorded audio signals, where the characteristics of the host signal are known in advance. In such cases, processing time is not a critical factor, as these systems generally do not account for real-time signal acquisition or report tests for real-time signal acquisition nor report the elapsed time between signal acquisition and watermarking output, known as latency. However, the increasing prevalence of audio sharing through real-time streams or video calls is a pressing issue requiring low-latency systems. This work introduces a low-latency watermarking system that utilizes a spread spectrum technique, a method that spreads the signal energy across a wide frequency band while embedding the watermark additively in the time domain to minimize latency. The system’s performance was evaluated by simulating real-time audio streams using two distinct methods. The results demonstrate that the proposed system achieves minimal latency during embedding, addressing the urgent need for such systems.