The increasing complexity and higher drilling cost of horizontal wells demand extensive research on software development for the analysis of drilling data in real-time. In extended reach drilling, the downhole weight on bit (WOB) differs from the surface seen WOB (obtained from on an off bottom hookload difference reading) due to the friction caused by drill string movement and rotation in the wellbore. The torque and drag analysis module of a user-friendly real-time software, Intelligent Drilling Advisory system (IDAs) can estimate friction coefficient and the effective downhole WOB while drilling. IDAs uses a 3-dimensional wellbore friction model for the analysis. Based on this model the forces applied on a drill string element are buoyed weight, axial tension, friction force and normal force perpendicular to the contact surface of the wellbore. The industry standard protocol, WITSML (Wellsite Information Transfer Standard Markup Language) is used to conduct transfer of drilling data between IDAs and the onsite or remote WITSML drilling data server.
IDAs retrieves real-time drilling data such as surface hookload, pump pressure, rotary RPM and surface WOB from the data servers. The survey data measurement for azimuth and inclination versus depth along with the retrieved drilling data, are used to do the analysis in different drilling modes, such as lowering or tripping in and drilling. For extensive analysis the software can investigate the sensitivity of friction coefficient and downhole WOB on user-defined drill string element lengths. The torque and drag analysis module, as well as the real-time software, IDAs has been successfully tested and verified with field data from horizontal wells drilled in Western Canada. In the lowering mode of drilling process, the software estimates the overall friction coefficient when the drill bit is off bottom. The downhole WOB estimated by the software is less than the surface measurement that the drillers used during drilling. The study revealed verification of the software by comparing the estimated downhole WOB with the downhole WOB recorded using a downhole measuring tool.