In the context of the global drive towards sustainability and rapid integration of renewables, electric vehicles, and charging infrastructure, the need arises for advanced operational strategies that support the grid while managing the intermittent nature of these resources. Microgrids emerge as a solution, operating independently or alongside the main grid to facilitate power flow management among interconnected sources and different loads locally. This review paper aims to offer a comprehensive overview of the different control strategies proposed in the literature to control microgrids with electric vehicle charging stations. The surveyed research is primarily categorized according to the employed control algorithms, although distinctions are also made based on defined microgrid architecture, utilization of specific power sources, and charging stations configurations. Additionally, this paper identifies research gaps in the current research. These gaps encompass the use of oversimplified models for charging stations and/or renewable sources operation, limited simulation time periods, or lack of experimental testing of proposed approaches. In the light of these identified shortcomings, this manuscript presents recommendations for guiding future research.