Summary.
Half-dose AZD1222 or BNT162b2 boosters maintained immunogenicity and safety, and were non-inferior to full doses. All doses elicited high immunogenicity and best with extended post-CoronaVac primary-series intervals (120-180 days) and high-transmissibility Omicron.
Methods.
At 60-to-<90, 90-to-<120, or 120-to-180 days (intervals) post-CoronaVac primary-series, participants were randomized to full-dose or half-dose AZD1222 or BNT162b2, and followed up at day-28, -60 and -90. Vaccination-induced immunogenicity to Ancestral, Delta and Omicron BA.1 strains were evaluated by assessing anti-spike (anti-S), anti-nucleocapsid antibodies, pseudovirus neutralization (PVNT), micro-neutralization titers, and T-cells assays. Descriptive statistics and non-inferiority cut-offs were reported as geometric mean concentration (GMC) or titer (GMT) and GMC/GMT ratios comparing baseline to day-28 and day-90 seroresponses, and different intervals post-CoronaVac primary-series. Omicron immunogenicity was only evaluated in full-dose recipients.
Findings.
No serious or severe vaccine-related safety events occurred. All assays and intervals showed non-inferior immunogenicity between full-doses and half-doses. However, full-dose vaccines and/or longer, 120-to-180-day intervals substantially improved immunogenicity (in GMC measured by anti-S assays or GMT measured by PVNT50; p <0.001). Within platforms and regardless of dose or platform, seroconversions were over 97%, and over 90% for pseudovirus neutralizing antibodies, but similar against the SARS-CoV-2 strains. Immunogenicity waned more quickly with half-doses than full-doses between day 60-to-90 follow-ups, but remained high against Ancestral or Delta strains. Against Omicron, the day-28 immunogenicity increased with longer intervals than shorter intervals for full-dose vaccines.
Interpretation.
Combining heterologous schedules, fractional dosing, and extended post-second dose intervals, broadens population-level protection and prevents disruptions, especially in resource-limited settings.
Funding.
Funding was provided by the Program Management Unit for Competitiveness Enhancement (PMU-C) National research, National Higher Education, Science, Research and Innovation Policy Council, Thailand through Clinixir Ltd.