In the treatment of uveal melanoma (UVM), histone deacetylase inhibitors (HDACi) have emerged as a promising epigenetic therapy. However, their clinical efficacy is hindered by the suboptimal pharmacokinetics and the strong self‐rescue of tumor cells. To overcome these limitations, reactive oxygen species (ROS)‐responsive nanoparticles (NPs) are designed that encapsulate HDACi MS‐275 and the glutamine metabolism inhibitor V‐9302. Upon reaching the tumor microenvironment, these NPs can disintegrate, thereby releasing MS‐275 to increase the level of ROS and V‐9302 to reduce the production of glutathione (GSH) related to self‐rescue. These synergistic effects lead to a lethal ROS storm and induce cell pyroptosis. When combined with programmed cell death protein 1 monoclonal antibodies (α‐PD‐1), these NPs facilitate immune cell infiltration, improving anti‐tumor immunity, converting “immune‐cold” tumors into “immune‐hot” tumors, and enhancing immune memory in mice. The findings present a nano‐delivery strategy for the co‐delivery of epigenetic therapeutics and metabolic inhibitors, which induces pyroptosis in tumors cells and improves the effectiveness of chemotherapy and immunotherapy.