Objective: Cardiovascular disease (CVD) is one of the leading causes of death worldwide, and answers are urgently needed regarding many aspects, particularly risk identification and prognosis prediction. Real-world studies with large numbers of observations provide an important basis for CVD research but are constrained by high dimensionality, and missing or unstructured data. Machine learning (ML) methods, including a variety of supervised and unsupervised algorithms, are useful for data governance, and are effective for high dimensional data analysis and imputation in real-world studies. This article reviews the theory, strengths and limitations, and applications of several commonly used ML methods in the CVD field, to provide a reference for further application.
Methods: This article introduces the origin, purpose, theory, advantages and limitations, and applications of multiple commonly used ML algorithms, including hierarchical and k-means clustering, principal component analysis, random forest, support vector machine, and neural networks. An example uses a random forest on the Systolic Blood Pressure Intervention Trial (SPRINT) data to demonstrate the process and main results of ML application in CVD.
Conclusion: ML methods are effective tools for producing real-world evidence to support clinical decisions and meet clinical needs. This review explains the principles of multiple ML methods in plain language, to provide a reference for further application. Future research is warranted to develop accurate ensemble learning methods for wide application in the medical field.