Purpose
In this paper, analytical modelling of heat distribution along the thickness of different printed circuit board (PCB) substrates is presented according to the 1 D heat transient conduction problem. This paper aims to reveal differences between the substrates and the geometry configurations and elaborate on further application of explicit modelling.
Design/methodology/approach
Different substrates were considered: classic FR4 and polyimide, ceramics (BeO, Al2O3) and novel biodegradables (polylactic-acid [PLA] and cellulose acetate [CA]). The board thicknesses were given in 0.25 mm steps. Results are calculated for heat transfer coefficients of convection and vapour phase (condensation) soldering. Even heat transfer is assumed on both PCB sides.
Findings
It was found that temperature distributions along PCB thicknesses are mostly negligible from solder joint formation aspects, and most of the materials can be used in explicit reflow profile modelling. However PLA shows significant temperature differences, pointing to possible modelling imprecisions. It was also shown, that while the difference between midplane and surface temperatures mainly depend on thermal diffusivity, the time to reach solder alloy melting point on the surface depends on volumetric heat capacity.
Originality/value
Results validate the applicability of explicit heat transfer modelling of PCBs during reflow for different heat transfer methods. The results can be incorporated into more complex simulations and profile predicting algorithms for industrial ovens controlled in the wake of Industry 4.0 directives for better temperature control and ultimately higher soldering quality.