This paper deals with the performance of electro-chemical discharge machining (ECDM) of a revolving glass rod. ECDM has been studied for machining insulating materials such as glass and ceramics. In conventional ECDM, an insulating workpiece is dipped in an electrolyte as a working fluid and a tool electrode is pressed on the surface with a small load. In the experiments, a workpiece was revolved to provide fresh working fluid into a gap between the tool electrode and the workpiece. A soda lime grass rod was machined with a thin tungsten rod in NaCl solution. The applied voltage was changed up to 40 V. The rotation speed was set to 0, 0.3, 3 and 30 min −1 . Discharge was observed over an applied voltage of 30 V. The width and depth of the machined grooves and the surface roughness of their bottom were increased with increase of the applied voltage. Although the depth of machining at 3 min −1 was the same as that at 30 min −1 , the width and roughness at 30 min −1 were smaller than those at 3 min −1 . Moreover, because the thickness of vaporization around the tool electrode was decreased with increase of the rotation speed, the width of the machined groove became smaller.