is put forward and proven to apply for systems with a non-zero threshold value. It is demonstrated that the model is applicable for general interparticle interaction strengths, particle numbers and threshold values. The model constructs the many-body process from single-particle emission processes. The rates and emission momenta of the single-particle processes are determined by the chemical potentials and energy differences to the threshold value of the potential for systems with different particle numbers. The chemical potentials and these energy differences depend on the interparticle interaction. Both the number of confined particles and their rate of emission thus allow for a control by the manipulation of the interparticle interaction and the threshold. Numerically exact results for two, three and one hundred bosons are shown and discussed. The devised control scheme for the many-body tunneling process performs very well for the dynamics of the momentum density, the correlations, the coherence and of the final state, i.e., the number of particles that remain confined in the potential.