The general population is concerned with traffic accidents. Driver fatigue is one of the leading causes of car accidents. Several factors, including nighttime driving, sleep deprivation, alcohol consumption, driving on monotonous roads, and drowsy and fatigue-inducing drugs, can contribute to fatigue. This study proposes a facial appearance-based driver fatigue detection system. This is based on the assumption that facial features can be used to identify driver fatigue. We categorize driver conditions into three groups: normal, talking, and yawning. In this study, we used Adaboost to propose Boosting Local Binary Patterns (LBP) to improve the image features of fatigue drivers in the Support Vector Machine (SVM) model. The experimental results indicate that the system's optimal performance achieves an accuracy value of 93.68%, a recall value of 94%, and a precision value of 94%.