The 5G wireless communication system supports varied applications, making the uplink/downlink traffic asymmetry more and more serious. Dynamic time division duplex (TDD) technique has become a key technology of 5G networks due to its flexibility to support asymmetric services. In this paper, we study dynamic TDD sub-frame reconfiguration algorithm based on shifting. Firstly, we define cell shifting priority considering both traffic and interference. Then, we perform cell shifting-based TDD sub-frame reconfiguration following cell shifting priority. Simulation results show that the proposed dynamic TDD algorithm can guarantee high data rate and low interference, thus effectively increases the network throughput.