2024
DOI: 10.5194/tc-18-3495-2024
|View full text |Cite
|
Sign up to set email alerts
|

Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne lidar data

Jordan N. Herbert,
Mark S. Raleigh,
Eric E. Small

Abstract: Abstract. Automated snow station networks provide critical hydrologic data. Whether point observations represent snowpack at larger areas is an enduring question. Leveraging the recent proliferation of airborne lidar snow depth data, we revisit the question of snow station representativeness at multiple scales surrounding 111 stations in Colorado and California (USA) from 2021–2023 (n=476 total samples). In about 50 % of cases, station depths were at least 10 cm higher than areal-mean snow depth (from lidar) a… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 53 publications
0
0
0
Order By: Relevance