The ambrosia beetle Xyleborus volvulus Fabricius has been reported as a potential vector of the plant pathogen Raffaelea lauricola T.C. Harr., Fraedrich & Aghayeva that is affecting avocado orchards in South Florida. In this study, we examined its life cycle, process of gallery formation, gallery structure, and fungal associates by rearing one generation on avocado sawdust medium under control conditions. The adult foundress excavated a vertical tunnel that constituted the main gallery with a length of 2.5 cm, followed by the construction of up to six secondary galleries with a total length of 4.4 cm. The time period for one generation (egg to adult) was 28 days. Teneral males emerged 3 days after the emergence of the first females. The F1 generation did not significantly contribute to gallery expansion. Four species of Raffaelea and nine yeast species were recovered from galleries and beetles. Raffaelea arxii and Candida berthetii were the most frequent symbionts recovered from new adults and galleries. Candida berthetii dominated during the early stages of the gallery development, whereas R. arxii was most frequent in later stages. Other Raffaelea species were inconsistently isolated from galleries, which suggests a strong association between Xyleborus volvulus and both R. arxii and C. berthetii. These results suggest that R. arxii is the primary nutritional symbiont of X. volvulus and that yeast species may be pioneer colonizers that assist with the growth of fungal symbionts.
IMPORTANCE Ambrosia beetles cultivate fungi in tunnels bored into weakened host trees. This obligate interaction is required for their survival as beetles feed on these symbiotic fungi, and the fungi benefit from transportation by the beetles. Xyleborus volvulus carries many nonpathogenic symbionts; however, recently the acquisition of Raffaelea lauricola (the causal agent of a lethal vascular disease of lauraceous trees) by this beetle has altered its status from wood degrader to potential pest in avocado. We conducted a study to understand the relationship of this beetle and its fungal associates. Our results show that X. volvulus has a multipartite flexible association with different Raffaelea species. The lack of fidelity in the mutualistic association may explain the acquisition of R. lauricola. Knowing the beetle biology and its mutualistic interactions furthers an understanding of the beetle’s role as a potential vector and in disease transmission.