A series of numerical experiments were performed in which energy was deposited ahead of a cone traveling at supersonic/hypersonic speeds. The angle of attack was zero, and the cone half-angles ranged from 15 to 45 deg. The Mach numbers simulated were 2, 4, 6, and 8. The energy was deposited instantaneously along a finite length of the cone axis, ahead of the cone's bow shock, causing a cylindrical shock wave to push air outward from the line of deposition. The shock wave would sweep the air out from in front of the cone, leaving behind a low-density column/tube of air, through which the cone (vehicle) propagated with significantly reduced drag. The greatest drag reduction observed was 96%. (One-hundred percent drag reduction would result in the complete elimination of drag forces on the cone.) The propulsive gain was consistently positive, meaning that the energy saved as a result of drag reduction was consistently greater than the amount of energy "invested" (i.e., deposited ahead of the vehicle). The highest ratio of energy saved/energy invested was approximately 6500% (a 65-fold "return" on the invested energy). We explored this phenomenon with a high-order-accurate multidomain weighted essentially nonoscillatory finite difference algorithm, using interpolation at subdomain boundaries. This drag-reduction/shock-mitigation technique can be applied locally or globally to reduce the overall drag on a vehicle.