Thrombospondin-1 (TSP-1) is an adhesive glycoprotein which, when secreted from α-granules of activated platelets, can bind to the cell surface and participate in platelet aggregate formation. In this study, we show that thrombin activation leads to the rapid and specific association of a large amount of secreted α-granular TSP-1 with the actin cytoskeleton. This cytoskeletal association of TSP-1 was correlated with platelet secretion, but not aggregation, and was inhibited by cytochalasin D, an inhibitor of actin polymerization. Association of TSP-1 with the actin cytoskeleton was mediated by membrane receptors, as shown by using MAII, a TSP-1-specific monoclonal antibody that inhibited both TSP-1 surface binding to activated platelets and cytoskeletal association. TSP-1 and its potential membrane receptors, e.g. αIIbβ3 integrin, CD36 and CD47, concomitantly associated with the actin cytoskeleton. However, studies on platelets from a patient with type I Glanzmann's thrombasthenia lacking αIIbβ3 and another with barely detectable CD36 showed normal TSP-1 surface expression and association with the actin cytoskeleton.