Introduction
Statistical methods to assess the impact of an intervention are increasingly used in clinical research settings. However, a comprehensive review of the methods geared toward practitioners is not yet available.
Methods and Materials
We provide a comprehensive review of three methods to assess the impact of an intervention: difference-in-differences (DID), segmented regression of interrupted time series (ITS), and interventional autoregressive integrated moving average (ARIMA). We also compare the methods, and provide illustration of their use through three important healthcare-related applications.
Results
In the first example, the DID estimate of the difference in health insurance coverage rates between expanded states and unexpanded states in the post-Medicaid expansion period compared to the pre-expansion period was 5.93 (95% CI, 3.99 to 7.89) percentage points. In the second example, a comparative segmented regression of ITS analysis showed that the mean imaging order appropriateness score in the emergency department at a tertiary care hospital exceeded that of the inpatient setting with a level change difference of 0.63 (95% CI, 0.53 to 0.73) and a trend change difference of 0.02 (95% CI, 0.01 to 0.03) after the introduction of a clinical decision support tool. In the third example, the results from an interventional ARIMA analysis show that numbers of creatinine clearance tests decreased significantly within months of the start of eGFR reporting, with a magnitude of drop equal to −0.93 (95% CI, −1.22 to −0.64) tests per 100,000 adults and a rate of drop equal to 0.97 (95% CI, 0.95 to 0.99) tests per 100,000 per adults per month.
Discussion
When choosing the appropriate method to model the intervention effect, it is necessary to consider the structure of the data, the study design, availability of an appropriate comparison group, sample size requirements, whether other interventions occur during the study window, and patterns in the data.