A successive interference cancelation (SIC) method is developed in this article to improve the performance of the downlink transmission throughput for the current high speed downlink packet access (HSDPA) system. The multicode code division multiplexing spreading sequences are orthogonal at the HSDPA downlink transmitter. However, the spreading sequences loose their orthogonality following transmission through frequency selective multipath channels. The SIC method uses a minimum-mean-square-error (MMSE) equalizer at the receiver to despread multicode signals to restore the orthogonality of the receiver signature sequences. The SIC scheme is also used as part of the resource allocation schemes at the transmitter and for the purpose of interference and inter-symbolinterference cancelation at the receiver. The article proposes a novel system value based optimization criterion to provide a computationally efficient energy allocation method at the transmitter, when using the SIC interference cancelation and MMSE equalizer methods at the receiver. The performance of the proposed MMSE equalizer based on the SIC receiver is significantly improved compared with the existing schemes tested and is very close to the theoretical upper bound which may be achieved under laboratory conditions.