T he Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission landed on Mars on 26 November 2018 in Elysium Planitia 1,2 , 38 years after the end of Viking 2 lander operations. At the time, Viking's seismometer 3 did not succeed in making any convincing Marsquake detections, due to its on-deck installation and high wind sensitivity. InSight therefore provides the first direct geophysical in situ investigations of Mars's interior structure by seismology 1,4. The Seismic Experiment for Interior Structure (SEIS) 5 monitors the ground acceleration with six axes: three Very Broad Band (VBB) oblique axes, sensitive to frequencies from tidal up to 10 Hz, and one vertical and two horizontal Short Period (SP) axes, covering frequencies from ~0.1 Hz to 50 Hz. SEIS is complemented by the APSS experiment 6 (InSight Auxiliary Payload Sensor Suite), which includes pressure and TWINS (Temperature and Winds for InSight) sensors and a magnetometer. These sensors monitor the atmospheric sources of seismic noise and signals 7. After seven sols (Martian days) of SP on-deck operation, with seismic noise comparable to that of Viking 3 , InSight's robotic arm 8 placed SEIS on the ground 22 sols after landing, at a location selected through analysis of InSight's imaging data 9. After levelling and noise assessment, the Wind and Thermal Shield was deployed on sol 66 (2 February 2019). A few days later, all six axes started continuous seismic recording, at 20 samples per second (sps) for VBBs and 100 sps for SPs. After onboard decimation, continuous records at rates from 2 to 20 sps and event records 5 at 100 sps are transmitted. Several layers of thermal protection and very low self-noise enable the SEIS VBB sensors to record the daily variation of the