The aim of this work was to elucidate the certain parameters (morphological, physicochemical) of terpene-indole alkaloids (TIAs) encapsulated human erythrocytes as a drug delivery system, and in addition to providing insight into the functional state of erythrocytes subjected to extracorporeal saturation with TIAs. Methods -A modified hypotonic pre-swelling method was implemented to obtain TIAs encapsulated erythrocytes. The content of entrapped TIAs in the erythrocytes was evaluated by a validated analytical method. The morphological and physicochemical properties of TIAs encapsulated erythrocytes were assessed by turbidity spectrum method and the osmotic resistance (OR) of encapsulated erythrocytes. Also, a series of in vitro tests have been carried out to characterize the drug release, haemoglobin leakage, and stability under storage condition. Results -TIAs loaded erythrocytes with drug encapsulation efficiency -vincristine sulfate (VCR) 42.963 ± 2.648%, and vinblastine sulfate (VLB) 44.266±2.432% were achieved by a modified pre-swelling hypotonic lysis method. Achieving higher TIAs encapsulation efficiency considerably essential in order to deliver a therapeutic success, however using improved encapsulation techniques have been achieved -VCR: 61.071±2.582% and VLB: 62.425±2.5288%, respectively. In the experiments, it was established, the morphological and physicochemical parameters of the obtained TIAs loaded erythrocytes were varied from the control erythrocytes in the order ~20-30%, although loaded erythrocytes can be stored at +4 0 C for 7 days while the encapsulate drug amount without falling below 95.964±0.472%. Conclusion -The stability and functionality of TIAs loaded erythrocytes were demonstrating relatively good performance with comparison to control erythrocytes and can be suggested to conduct in vivo experiment in animals for evaluating therapeutic potential compared to free drug forms.