Currently, there is a problem of reliability of buildings and structures built on permafrost soils according to principle I, which is due to the dependence of standard design solutions on the climatic component. The solution to this problem involves the introduction of methods of active thermal stabilization of soils, which makes it possible to effectively manage heat flows and ensure the preservation of the base soils in a frozen state. One of the key solutions proposed by the authors is the use of a heat pump with the placement of a cooling circuit in a soil massif. The use of heat pumps in construction on sites with permafrost soils is an innovative approach that ensures the safety and efficiency of building operation. In the article, using a specific example of a building in Salekhard, the possibility of using a heat pump on a site with a sunken roof of icy permafrost rocks is considered.Research methods include the analysis and generalization of literary sources and multivariate computational experiments to study the temperature field of the building foundation soils using a heat pump. The main conclusion of the study is the expediency of using heat pumps in the construction of buildings in areas with a sunken roof of icy permafrost. The innovative method proposed in this article for preserving the soils of the base in a frozen state, when applied in practice, will prove to be an effective solution against the background of a new natural challenge — global climate warming. In addition to keeping the foundation soils in a frozen state and ensuring stable operation of buildings and structures in the cryolithozone, heat pumps provide significant economic benefits by reducing operating costs. Heat pumps also contribute to reducing emissions of carbon dioxide and other pollutants, which is important in the context of global climate change and the pursuit of sustainable development.