Optical solitons can find important applications in optical fiber communication systems. Here, we simulate extra-cavity modulation of a chirped Gaussian bisoliton in a 1 μm wavelength band. Several different soliton parameters are varied (including the amplitude ratio and time delay of orthogonal components, the projection angle, phase difference, pulse chirps and propagation distances), to effectively change the optical spectra and pulse shapes of the initial input chirped Gaussian bisoliton. For example, when the two branches in the optical fiber modulation system have the same or different fiber lengths, the modulated chirped Gaussian bisoliton will show obviously different properties in the time domain for orthogonally polarized components, while the corresponding optical spectra have no obvious differences. The simulation results reveal the effects of extra-cavity modulation of the chirped Gaussian bisoliton, which further explores the field of soliton shaping out of a fiber laser cavity.