2021
DOI: 10.1016/bs.arnmr.2021.02.003
|View full text |Cite
|
Sign up to set email alerts
|

Recent advances in benchtop NMR spectroscopy and its applications

Abstract: Benchtop NMR spectroscopy has known a major growth over the last decade, thanks to the design of permanent, compact magnets in the 1-2 T range, that provide remarkable performance in terms of resolution and sensitivity. Although resulting spectra are more limited than their high-field counterparts, the achievable structural and quantitative information can be maximized by a clever use of pulse sequences -in particular those involving gradient pulses-and by advanced data processing algorithms. In this chapter, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
35
0
5

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 32 publications
(40 citation statements)
references
References 139 publications
0
35
0
5
Order By: Relevance
“…Considering that the JEDI experiment only refocuses uncoupled protons, i.e. singlets like SPC and Glyc, and given that the heavy pulse editing removes almost all resonances from the spectrum, JEDI presents an ideal candidate pulse sequence for application at lower fields as it intrinsically avoids two of the main issues encountered with benchtop NMR systems: namely, severely decreased spectral dispersion and more pronounced interference of strong coupling 60,61 . This can be confirmed by acquisition of a regular 1D 1 H NMR at 80 MHz (Figure 1E) which also demonstrates the markedly lowered signal to noise (S/N) at lower field.…”
Section: Resultsmentioning
confidence: 99%
“…Considering that the JEDI experiment only refocuses uncoupled protons, i.e. singlets like SPC and Glyc, and given that the heavy pulse editing removes almost all resonances from the spectrum, JEDI presents an ideal candidate pulse sequence for application at lower fields as it intrinsically avoids two of the main issues encountered with benchtop NMR systems: namely, severely decreased spectral dispersion and more pronounced interference of strong coupling 60,61 . This can be confirmed by acquisition of a regular 1D 1 H NMR at 80 MHz (Figure 1E) which also demonstrates the markedly lowered signal to noise (S/N) at lower field.…”
Section: Resultsmentioning
confidence: 99%
“…In den letzten Jahren wurde die magnetische Feldstärke (B 0 ) sowie die Homogenität des B 0 -Feldes der permanentmagnetbasierte NMR-Spektrometer erheblich verbessert. [6] Mittlerweile werden diese NMR-Spektrometer mit bis zu B 0 = 2,3 Tesla angeboten, was einer 1 H-Larmorfrequenz von 100 MHz entspricht. [6] Auf-grund der geringen Größe (~60 × 60 × 60 cm, ~50-120 kg) werden permanentmagnetbasierte NMR-Spektrometer auch als Benchtop-NMR bezeichnet.…”
Section: Benchtop-nmr Als Günstige Alternative Zu Hochfeld-nmrunclassified
“…[6] Mittlerweile werden diese NMR-Spektrometer mit bis zu B 0 = 2,3 Tesla angeboten, was einer 1 H-Larmorfrequenz von 100 MHz entspricht. [6] Auf-grund der geringen Größe (~60 × 60 × 60 cm, ~50-120 kg) werden permanentmagnetbasierte NMR-Spektrometer auch als Benchtop-NMR bezeichnet. [6] Benchtop-NMR-Spektrometer sind, verglichen mit Hochfeld (hf)-NMR-Spektrometer, günstig in der Anschaffung und insbesondere im Betrieb, da diese keine flüssigen Kryogene wie Stickstoff und Helium benötigen.…”
Section: Benchtop-nmr Als Günstige Alternative Zu Hochfeld-nmrunclassified
See 1 more Smart Citation
“…NMR spectroscopy is a well-established technique for reaction monitoring on high field NMR spectrometers, and more recently also on benchtop instruments. [1][2][3] In principle, the reaction rate can be determined by monitoring the integral intensity of a single signal of a reactant. In this context, any splitting of the observed signal by scalar couplings decreases the signal-to-noise ratio (SNR) and therefore the removal of such splitting is desirable.…”
mentioning
confidence: 99%