Infectious diseases are a major global cause of morbidity and mortality, seriously affecting public health and socioeconomic stability. Since infectious diseases can be caused by a wide variety of pathogens with similar clinical manifestations and symptoms that are difficult to accurately distinguish, selecting the appropriate diagnostic techniques for the rapid identification of pathogens is crucial for clinical disease diagnosis and public health management. However, traditional diagnostic techniques have low detection rates, long detection times and limited automation, which means that they do not meet the requirements for rapid diagnosis. Recent years have seen continuous developments in molecular detection technology, which has a higher sensitivity and specificity, shorter detection time and increased automation, and performs an important role in the early and rapid detection of infectious disease pathogens. The present study summarizes recent progress in molecular diagnostic technologies such as PCR, isothermal amplification, gene chips and high-throughput sequencing for the detection of infectious disease pathogens, and compares the technical principles, advantages and disadvantages, applicability and costs of these diagnostic techniques.