Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Battery recycling has become increasingly crucial in mitigating environmental pollution and conserving valuable resources. As demand for battery-powered devices rises across industries like automotive, electronics, and renewable energy, efficient recycling is essential. Traditional recycling methods, often reliant on manual labor, suffer from inefficiencies and environmental harm. However, recent artificial intelligence (AI) advancements offer promising solutions to these challenges. This paper reviews the latest developments in AI applications for battery recycling, focusing on methodologies, challenges, and future directions. AI technologies, particularly machine learning and deep learning models, are revolutionizing battery sorting, classification, and disassembly processes. AI-powered systems enhance efficiency by automating tasks such as battery identification, material characterization, and robotic disassembly, reducing human error and occupational hazards. Additionally, integrating AI with advanced sensing technologies like computer vision, spectroscopy, and X-ray imaging allows for precise material characterization and real-time monitoring, optimizing recycling strategies and material recovery rates. Despite these advancements, data quality, scalability, and regulatory compliance must be addressed to realize AI’s full potential in battery recycling. Collaborative efforts across interdisciplinary domains are essential to develop robust, scalable AI-driven recycling solutions, paving the way for a sustainable, circular economy in battery materials.
Battery recycling has become increasingly crucial in mitigating environmental pollution and conserving valuable resources. As demand for battery-powered devices rises across industries like automotive, electronics, and renewable energy, efficient recycling is essential. Traditional recycling methods, often reliant on manual labor, suffer from inefficiencies and environmental harm. However, recent artificial intelligence (AI) advancements offer promising solutions to these challenges. This paper reviews the latest developments in AI applications for battery recycling, focusing on methodologies, challenges, and future directions. AI technologies, particularly machine learning and deep learning models, are revolutionizing battery sorting, classification, and disassembly processes. AI-powered systems enhance efficiency by automating tasks such as battery identification, material characterization, and robotic disassembly, reducing human error and occupational hazards. Additionally, integrating AI with advanced sensing technologies like computer vision, spectroscopy, and X-ray imaging allows for precise material characterization and real-time monitoring, optimizing recycling strategies and material recovery rates. Despite these advancements, data quality, scalability, and regulatory compliance must be addressed to realize AI’s full potential in battery recycling. Collaborative efforts across interdisciplinary domains are essential to develop robust, scalable AI-driven recycling solutions, paving the way for a sustainable, circular economy in battery materials.
Building envelopes and indoor environments exhibit thermal inertia, forming a virtual energy storage system in conjunction with the building air conditioner (AC) system. This system represents a current demand response resource for building electricity use. Thus, this study centers on the CatBoost algorithm within machine learning (ML) technology, utilizing the LASSO regression model for feature selection and applying the Optuna framework for hyperparameter optimization (HPO) to develop a cost-optimal control method for minimizing building AC loads. This method addresses the challenges associated with traditional load forecasting and control methods, which are often impacted by environmental temperature, building parameters, and user behavior uncertainties. These methods struggle to accurately capture the complex dynamics and nonlinear relationships of AC operations, making it difficult to devise AC operation and virtual energy storage scheduling strategies effectively. The proposed method was applied and validated using a case study of an office building in Nanjing, China. The prediction results showed coefficient of variation in root mean square error (CV-RMSE) values of 6.4% and 2.2%. Compared with the original operating conditions, the indoor temperature remained within a comfortable range, the AC load was reduced by 5.25%, and the operating energy costs were reduced by 24.94%. These results demonstrate that the proposed method offers improved computational efficiency, enhanced model performance, and economic benefits.
This paper examines Connected Smart Green Townhouses (CSGTs) as a modern residential building model in Burnaby, British Columbia (BC). This model incorporates a wide range of sustainable materials and smart components such as recycled insulation, Photovoltaic (PV) solar panels, smart meters, and high-efficiency systems. The CSGTs operate in grid-connected mode to balance on-site renewables with grid resources to improve efficiency, cost-effectiveness, and sustainability. Real datasets are used to optimize resource consumption, including electricity, gas, and water. Renewable Energy Sources (RESs), such as PV systems, are integrated with smart grid technology. This creates an effective framework for managing energy consumption. The accuracy, efficiency, emissions, and cost are metrics used to evaluate CSGT performance. CSGTs with one to four bedrooms are investigated considering water systems and party walls. A deep Machine Learning (ML) model combining Long Short-Term Memory (LSTM) and a Convolutional Neural Network (CNN) is proposed to improve the performance. In particular, the Mean Absolute Percentage Error (MAPE) is below 5%, the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are within acceptable levels, and R2 is consistently above 0.85. The proposed model outperforms other models such as Linear Regression (LR), CNN, LSTM, Random Forest (RF), and Gradient Boosting (GB) for all bedroom configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.