Machine learning-based distributed routing algorithms, in contrast to traditional mathematical model-driven distributed routing algorithms, are typically data-driven, allowing them to adapt to dynamically changing network environments and various performance evaluation index optimization requirements. It is quite likely that it will become a key part of the next-generation Internet in the future. However, current intelligent routing research is still in its early stages. This article provides a comprehensive review of the state-of-the-art routing algorithms based on machine learning. First, important research on existing data-driven intelligent routing algorithms is presented with the key concepts and applications of these systems demonstrated. To enable intelligent routing algorithms to be deployed in real scenarios with cheap cost and high reliability, two appropriate training deployment frameworks and intelligent routing algorithm training and deployment strategies are given. Finally, the future development of machine learning-based intelligent routing systems is examined. The opportunities and problems that have been encountered, as well as prospective research directions, are discussed.