Radiation is one of the main methods for the treatment of colorectal cancer (CRC) before or after surgery. However, radiotherapy tolerance of patients with CRC is often a major concern. Interferon regulatory factor 1 (IRF1) is a member of the IRF family and is involved in the development of multiple diseases, including tumors. The present study investigated the role of IRF1 in the development and radiation sensitivity of CRC. Immunohistochemistry was performed to examine the expression levels of IRF1 in tissue samples from patients with CRC, as well as in nude mice. MTT, 5-ethynyl-20-deoxyuridine, colony formation, cell cycle alteration and apoptosis assays were performed in CRC cell lines. Western blotting and immunofluorescence were used to detect the expression levels of a series of proteins. RNA sequencing was applied to identify genes whose expression was upregulated by IRF1 overexpression. Xenograft nude mouse models and hematoxylin and eosin staining were used to validate the present findings
in vivo
. It was revealed that the expression levels of IRF1 were significantly lower in CRC tissues than in adjacent tissues. IRF1 upregulation inhibited cell proliferation and colony formation, caused G
1
cell arrest, promoted cell apoptosis, and enhanced the sensitivity of CRC cells to X-ray irradiation. The role of IRF1 in promoting the radiosensitivity of CRC was further demonstrated in nude mice with CRC xenografts. In addition, RNA sequencing revealed that overexpression of IRF1 in CRC cells significantly increased the expression levels of interferon-induced protein family members interferon α inducible protein 6, interferon induced transmembrane protein 1 and interferon induced protein 35 (fold change >2.0). In summary, the present study demonstrated that the upregulation of IRF1 inhibited the progression and promoted the radiosensitivity of CRC, likely by regulating interferon-induced proteins.