The production of graphene from cost-effective and readily available sources remains a significant challenge in materials science. This study investigates the potential of common pencil leads as precursors for graphene synthesis using the Flash Joule Heating (FJH) process. We examined 6H, 4B, and 14B pencil grades, representing different graphite-to-clay ratios, under varying voltages (0 V, 200 V, and 400 V) to elucidate the relationships among initial composition, applied voltage, and resulting graphene quality. Samples were characterized using Raman spectroscopy, electrical resistance measurements, and microscopic analysis. The results revealed grade-specific responses to applied voltages, with all samples showing decreased electrical resistance post-FJH treatment. Raman spectroscopy indicated significant structural changes, particularly in ID/IG and I2D/IG ratios, providing insights into defect density and layer stacking. Notably, the 14B pencil lead exhibited unique behavior at 400 V, with a decrease in the ID/IG ratio from 0.135 to 0.031 and an increase in crystallite size from 143 nm to 612 nm, suggesting potential in situ annealing effects. In contrast, harder grades (6H and 4B) showed increased defect density at higher voltages. This research contributes to the development of more efficient and environmentally friendly methods for graphene production, potentially opening new avenues for sustainable and scalable synthesis.