Background
Objective measures of screen time are necessary to better understand the complex relationship between screen time and health outcomes. However, current objective measures of screen time (e.g., passive sensing applications) are limited in identifying the user of the mobile device, a critical limitation in children’s screen time research where devices are often shared across a family. Behavioral biometrics, a technology that uses embedded sensors on modern mobile devices to continuously authenticate users, could be used to address this limitation.
Objective
The purpose of this scoping review was to summarize the current state of behavioral biometric authentication and synthesize these findings within the scope of applying behavioral biometric technology to screen time measurement.
Methods
We systematically searched five databases (Web of Science Core Collection, Inspec in Engineering Village, Applied Science & Technology Source, IEEE Xplore, PubMed), with the last search in September of 2022. Eligible studies were on the authentication of the user or the detection of demographic characteristics (age, gender) using built-in sensors on mobile devices (e.g., smartphone, tablet). Studies were required to use the following methods for authentication: motion behavior, touch, keystroke dynamics, and/or behavior profiling. We extracted study characteristics (sample size, age, gender), data collection methods, data stream, model evaluation metrics, and performance of models, and additionally performed a study quality assessment. Summary characteristics were tabulated and compiled in Excel. We synthesized the extracted information using a narrative approach.
Results
Of the 14,179 articles screened, 122 were included in this scoping review. Of the 122 included studies, the most highly used biometric methods were touch gestures (n = 76) and movement (n = 63), with 30 studies using keystroke dynamics and 6 studies using behavior profiling. Of the studies that reported age (47), most were performed exclusively in adult populations (n = 34). The overall study quality was low, with an average score of 5.5/14.
Conclusion
The field of behavioral biometrics is limited by the low overall quality of studies. Behavioral biometric technology has the potential to be used in a public health context to address the limitations of current measures of screen time; however, more rigorous research must be performed in child populations first.
Systematic review registration
The protocol has been pre-registered in the Open Science Framework database (https://doi.org/10.17605/OSF.IO/92YCT).