Liquid biopsy enables noninvasive and dynamic analysis of molecular or cellular biomarkers, and therefore holds great potential for the diagnosis, prognosis, monitoring of disease progress and treatment efficacy, understanding of disease mechanisms, and identification of therapeutic targets for drug development. In this review, the recent progress in nanomaterials, nanostructures, nanodevices, and nanosensors for liquid biopsy is summarized, with a focus on the detection and molecular characterization of circulating tumor cells (CTCs) and extracellular vesicles (EVs). The developments and advances of nanomaterials and nanostructures in enhancing the sensitivity, specificity, and purity for the detection of CTCs and EVs are discussed. Sensing techniques for signal transduction and amplification as well as visualization strategies are also discussed. New technologies for the reversible release of the isolated CTCs and EVs and for single‐CTC/EV analysis are summarized. Emerging microfluidic platforms for the integral on‐chip isolation, detection, and molecular analysis are also included. The opportunities, challenges, and prospects of these innovative materials and technologies, especially with regard to their feasibility in clinical applications, are discussed. The applications of nanotechnology‐based liquid biopsy will bring new insight into the clinical practice in monitoring and treatment of tumor and other significant diseases.