“…Since the ligand structure has a central role in determining the activity as well as the stereospecifity of these types of catalysts, and as shown in Figure 2, flexible electronic nature of a ligand is a key requirement for achieving high activity, the research based on the ligand oriented catalyst design concept has resulted in the discovery of a number of highly active catalysts for the polymerization of ethylene, which include: phenoxy-imine ligand early transition metal complexes (FI catalysts), pyrrolide-imine ligand group 4 transition metal complexes (PI catalysts), indolide-imine ligand Ti complexes (II catalysts), phenoxy-imine ligand group 4 transition metal complexes (IF catalysts), phenoxy-ether ligand Ti complexes (FE catalysts), imine-pyridine ligand late transition metal complexes (IP catalysts), and tris(pyrazolyl) borate ligand Ta complexes (PB catalysts) (Figure 3) [20,[26][27][28][29][30]. In particular, bis(phenoxy-imine) group 4 metal catalysts, developed by Fujita [19][20][21] caused a new revolution in the field of catalytic olefin polymerization.…”