Using e-beam nanolithography, the current injection/transport area in organic light-emitting diodes (OLEDs) was confined into a narrow linear structure with a minimum width of 50 nm. This caused suppression of Joule heating and partial separation of polarons and excitons, so the charge density where the electroluminescent efficiency decays to the half of the initial value (J0) was significantly improved. A device with a narrow current injection width of 50 nm exhibited a J0 that was almost two orders of magnitude higher compared with that of the unpatterned OLED.