A nitrogenase-inspired biomimetic chalcogel system comprising double-cubane [Mo 2 Fe 6 S 8 (SPh) 3 ] and single-cubane (Fe 4 S 4 ) biomimetic clusters demonstrates photocatalytic N 2 fixation and conversion to NH 3 in ambient temperature and pressure conditions. Replacing the Fe 4 S 4 clusters in this system with other inert ions such as Sb 3+ , Sn 4+ , Zn 2+ also gave chalcogels that were photocatalytically active. Finally, molybdenum-free chalcogels containing only Fe 4 S 4 clusters are also capable of accomplishing the N 2 fixation reaction with even higher efficiency than their Mo 2 Fe 6 S 8 (SPh) 3 -containing counterparts. Our results suggest that redox-active iron-sulfide-containing materials can activate the N 2 molecule upon visible light excitation, which can be reduced all of the way to NH 3 using protons and sacrificial electrons in aqueous solution. Evidently, whereas the Mo 2 Fe 6 S 8 (SPh) 3 is capable of N 2 fixation, Mo itself is not necessary to carry out this process. The initial binding of N 2 with chalcogels under illumination was observed with in situ diffuse-reflectance Fourier transform infrared spectroscopy (DRIFTS). 15 N 2 isotope experiments confirm that the generated NH 3 derives from N 2 . Density functional theory (DFT) electronic structure calculations suggest that the N 2 binding is thermodynamically favorable only with the highly reduced active clusters. The results reported herein contribute to ongoing efforts of mimicking nitrogenase in fixing nitrogen and point to a promising path in developing catalysts for the reduction of N 2 under ambient conditions. nitrogenase mimics | chalcogel | N 2 fixation | ammonia synthesis | photocatalytic T he reduction of atmospheric nitrogen to ammonia is one of the most essential processes for sustaining life. Currently, roughly half of the fixed nitrogen is supplied biologically by nitrogenase, while nearly the other half is from the industrial Haber-Bosch process, which operates under high temperature (400-500°C) and high pressure (200-250 bar) in the presence of a metallic iron catalyst (1). Nitrogenase, a two-component protein system comprising a MoFe protein and an associated Fe protein, carries out this "fixation" in nature under ambient temperature and pressure (2-4). N 2 substrate binding and activation take place at the ironmolybdenum-sulfur cofactor (FeMoco), and in some cases, Mofree iron-sulfur cofactor FeFeco and iron-vanadium-sulfur cofactor FeVco cofactors. Electron transfer during this catalytic process is believed to proceed from a [4Fe:4S] cluster located in the Fe protein to another Fe/S cluster (the P cluster) buried in the MoFe protein and finally to the FeMoco (Fig. 1A) (2, 5, 6). Whereas the role of Mo in the reactivity of nitrogenase has been the subject of long debate, iron is now well recognized as the only transition metal essential to all nitrogenases, and recent biochemical and spectroscopic data point to iron as the site of N 2 binding in the FeMoco (7-9). Naturally, understanding and mimicking how the nitrogenas...