The oxygen reduction reaction (ORR) is one of the most critical reactions in energy conversion systems, and it facilitates the efficient conversion of chemical energy into electrical energy, which is necessary for modern technology. Developing efficient and cost-effective catalysts for ORRs is crucial for advancing and effectively applying renewable energy technologies such as fuel cells, metal–air batteries, and electrochemical sensors. In recent years, iron porphyrin-based composites have emerged as ideal catalysts for facilitating effective ORRs due to their unique structural characteristics, abundance, advances in synthesis, and excellent catalytic properties, which mimic natural enzymatic systems. However, many articles have focused on reviewing porphyrin-based frameworks or metalloporphyrins in general, necessitating research specifically addressing iron porphyrin. This review discusses iron porphyrin as an effective catalyst in ORRs. It provides a comprehensive knowledge of the application of iron porphyrin-based composites for electrocatalytic ORRs, focusing on their properties, synthesis, structural integration with conductive supports, catalytic mechanism, and efficacy. This review also discusses the challenges of applying iron porphyrin-based composites and provides recommendations to address these challenges.