The application of superamphiphobic coatings improves the surface’s ability to repel fluids, thereby greatly enhancing its various functions, including anti-fouling, anti-corrosion, anti-icing, anti-bacterial, and self-cleaning properties. This maximizes the material’s potential for industrial applications. This work utilized the agglomeration phenomenon exhibited by nano-spherical titanium dioxide (TiO2) particles to fabricate 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) modified TiO2 (TiO2@fluoroPOS) fillers with low surface energy. This was achieved through the in-situ formation of protective armor on the surface of the agglomerates using the sol-gel method and fluorination modification. Polyvinylidene fluoride-tetrafluoropropylene (PVDF-HFP) and TiO2@fluoroPOS fillers were combined using a spraying technique to prepare P/TiO2@fluoroPOS coatings with superamphiphobicity. Relying on the abundance of papillae, micropores, and other tiny spaces on the surface, the coating can capture a stable air film and reject a variety of liquids. When the coatings were immersed in solutions of 2 mol/L HCl, NaCl, and NaOH for a duration of 12 h, they retained their exceptional superamphiphobic properties. Owing to the combined influence of the armor structure and the organic binder, the coating exhibited good liquid repellency during water jetting and sandpaper abrasion tests. Furthermore, the coating has shown exceptional efficacy in terms of its ability to be anti-icing, anti-waxing, and self-cleaning.