Quantum-chemical testing of donor-acceptor properties of binary molecular complexes, related to the singlet state, is suggested as QCh calculations of studied systems and their constituents by using both spin-nondependent (RHF) and spindependent (UHF) versions of the exploited computational tool. The avoided crossing of intermolecular interaction terms of neutral molecules E int (A 0 B 0 ) and molecular ions E int (A + B − ) causes a multi-mode character of the ground state term. The dependence of D-A complex properties on the type of the term, space positions of the term minimum, and the interrelation of the corresponding energies are discussed. The suggested approach has been applied to binary complexes C 60 +X (X= TAE, TDAE, DMMA, COANP, 2Li, Mg).