A few years ago, powered prostheses triggered new technological advances in diverse areas such as mobility, comfort, and design, which have been essential to improving the quality of life of individuals with lower limb disability. The human body is a complex system involving mental and physical health, meaning a dependant relationship between its organs and lifestyle. The elements used in the design of these prostheses are critical and related to lower limb amputation level, user morphology and human-prosthetic interaction. Hence, several technologies have been employed to accomplish the end user’s needs, for example, advanced materials, control systems, electronics, energy management, signal processing, and artificial intelligence. This paper presents a systematic literature review on such technologies, to identify the latest advances, challenges, and opportunities in developing lower limb prostheses with the analysis on the most significant papers. Powered prostheses for walking in different terrains were illustrated and examined, with the kind of movement the device should perform by considering the electronics, automatic control, and energy efficiency. Results show a lack of a specific and generalised structure to be followed by new developments, gaps in energy management and improved smoother patient interaction. Additionally, Human Prosthetic Interaction (HPI) is a term introduced in this paper since no other research has integrated this interaction in communication between the artificial limb and the end-user. The main goal of this paper is to provide, with the found evidence, a set of steps and components to be followed by new researchers and experts looking to improve knowledge in this field.