The geochemical fractionation of metals in soils and sediments corresponds to a technique to evaluate the levels of contamination and their probability of transfer to bodies of water and biota. For environmental studies in water reservoirs, the results of geochemical fractionation added to physicochemical analysis of water, can define the environmental conditions of metal release. This chapter briefly presents the concept and some fractionation techniques, with emphasis on the BCR methodology, in conjunction with other analyzes of water from the bottom of the reservoir to evaluate the dynamics of Mn mobilization in the Riogrande reservoir in Colombia, as example of practical application of Geochemical Fractionation. The highest proportions of Mn in the sediments of the Riogrande II reservoir were found in the exchangeable fraction and associated with carbonates, however the diffraction analysis did not find carbonated phases. It was concluded that the Mn in the water of the bottom of the Riogrande II reservoir originated especially by processes of desorption of Mn, in addition to reductive dissolution of oxyhydroxides.for a complete environmental study. In this chapter of the book "Fractionation", an explanation is given for the concept of Geochemical Fractionation, its importance, the BCR methodology and its application to the release of metals such as Mn in sediments, applied to the Riogrande II Water Reservoir in Colombia.
The problem of water contamination in reservoirs by the release of heavy metals from sediments 2.1. Metals in sediments in water reservoirs and lakesThe sediments of the reservoirs, lakes and oceans reflect a recent environmental history, since they are geological records of climatic changes, geodynamic processes, land uses and especially human activity that positively or negatively impacted the environment. The sediments are characterized by the storage of important concentrations of heavy metals and xenobiotic substances due to their high adsorbent capacity, the product of a number of functional groups that allow them to form surface complexes. However, the potential for release and contamination of water from sediments depends on: total concentrations of all substances, environmental conditions of the bottom water (pH, ORP-Eh and organic matter) and forms in which metals are found in the sediments (metals fractions).Metals have several physicochemical properties and especially different valences, which allows them to be found in different chemical forms or fractions in solid materials such as soil, sediments and mining mud. Some of these forms or geochemical forms are more available than others; so, their release and mobilization to an aqueous phase occurs with slight changes in pH, ORP-Eh [1], temperature and electrical conductivity. The water quality of a reservoir is affected by the presence of dissolved metals and by the conditions and mechanisms of release from the soil or sediments [2], and it has been found that the physicochemical and biological properties and conditions of water ...