The resonating Hartree-Fock Configuration Interaction (Res HF-CI)method is an efficient tool to investigate complicated strongly correlated systems such as ion-radical systems. In this method, we explore several spin-unrestricted Hartree-Fock (UHF) solutions that are energetically low-lying. However it is difficult to choose the symmetry-broken references appropriately as the site increases. In this study, we present the spin-optimized procedure, which is based on the Löwdin spin-projection method, for the Res HF-CI theory, denoted as SO Res-HF CI. We apply this SO Res-HF CI method to depict the potential curves of typical polyradical systems and compared the computational results using complete-active-space (CAS) CI based on UHF natural orbital (UNO), spinprojected UHF, and the previous version of Res HF-CI. We discuss the relation between computational results and the electronic configurations that are important to cover the electron correlation effects for each system. Further, we apply SO Res-HF CI method for the simple organic radical. In addition, we extend this scheme to the GHF case, and show that the use of GHF as a seed of SO Res-HF CI is desirable for the spin-frustrated systems.