We identify the most important parameters for the growth of ordered SiGe islands on pit-patterned Si(001) substrates. From a multi-dimensional parameter space we link individual contributions to isolate their influence on ordered island growth. This includes the influences of: the pit size, pit depth and pit period on the Si buffer layer and subsequent Ge growth; the pit sidewall inclination on Ge island growth; the amount of Ge on island morphologies as well as the influences of the pit-size homogeneity, the pit period, the Ge growth temperature and rate on island formation. We highlight that the initial pit shape and pit size in combination with the growth conditions of the Si buffer layer should be adjusted to provide suitable preconditions for the growth of Ge islands with the desired size, composition and nucleation position. Furthermore, we demonstrate that the wetting layer between pits can play the role of a stabilizer that inhibits shape transformations of ordered islands. Thus, dislocation formation within islands can be delayed, uniform arrays of one island type can be fabricated and secondary island nucleation between pits can be impeded. These findings allow us to fabricate perfectly ordered and homogeneous Ge islands on one and the same sample, even if the pit period is varied from a few hundred nanometres to several micrometres.