A precursor was prepared using a co-precipitation method to synthesize crystalline calcium tungstate. The prepared precursor was dried in an oven at 80 °C for 18 h. The dried powders, prepared without a heat treatment process, were observed in XRD analysis to be a crystalline CaWO4 phase, confirming that the synthesis of crystalline CaWO4 is possible even at low temperature. To use this crystalline CaWO4 as a light emitting material, rare earth ions were added when preparing the precursor. The CaWO4 powders doped with terbium (Tb3+) and europium (Eu3+) ions, respectively, were also observed to be crystalline in XRD analysis. The luminescence of the undoped CaWO4 sample exhibited a wide range of 300 ~ 600 nm and blue emission with a central peak of 420 nm. The Tb3+-doped sample showed green light emission at 488, 545, 585, and 620 nm, and the Eu3+-doped sample showed red light emission at 592, 614, 651, and 699 nm. Blue, green, and red CaWO4 powders with various luminescence properties were mixed with glass powder and heat-treated at 600 °C to fabricate a blue luminescent PiG disk. In addition, a flexible green and red light-emitting composite was prepared by mixing it with a silicone-based polymer. An anti-counterfeiting application was prepared by using the phosphor in an ink, which could not be identified with the naked eye but can be identified under UV light.