2002
DOI: 10.1007/978-1-4757-3615-1
|View full text |Cite
|
Sign up to set email alerts
|

Recent Developments in Nonlinear Cointegration with Applications to Macroeconomics and Finance

Abstract: of the hardcover 1st edition 2002 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permis sion from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

1
31
0
2

Year Published

2009
2009
2024
2024

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 69 publications
(34 citation statements)
references
References 0 publications
1
31
0
2
Order By: Relevance
“…Zhang et al (1999) employed a neural network to test the existence of nonlinear cointegration relation and discussed its feasibility [5]. But, the neural network is still flawed to the discriminate analysis of nonlinear cointegration because of its well-known limitations.…”
Section: B Nonlinear Cointegration Analysis Based On ε -Svrmentioning
confidence: 99%
See 3 more Smart Citations
“…Zhang et al (1999) employed a neural network to test the existence of nonlinear cointegration relation and discussed its feasibility [5]. But, the neural network is still flawed to the discriminate analysis of nonlinear cointegration because of its well-known limitations.…”
Section: B Nonlinear Cointegration Analysis Based On ε -Svrmentioning
confidence: 99%
“…But, the neural network is still flawed to the discriminate analysis of nonlinear cointegration because of its well-known limitations. Here, the ε-SVR will be applied to overcome these limitations and the specific steps are expressed as follows according to the definition [5][11]:…”
Section: B Nonlinear Cointegration Analysis Based On ε -Svrmentioning
confidence: 99%
See 2 more Smart Citations
“…Ensuite, Anderson (1997) a proposé une extension de ces modèles où l'ajustement est plutôt lisse contrairement au modèle de Balke et Fomby (1997) où l'ajustement est brutal. Par suite à ces travaux, les modèles de cointégration à seuil ont fait l'objet de plusieurs analyses empiriques tels que ceux de Escribano (1997), Michael, Peel et Taylor (1997), Dufrénot et Mignon (2002), Sarantis (1999), ainsi que Rothman, Van Dijk et Franses (2001) et Dufrénot et al (2003). Ces travaux ont appliqué les modèles de cointégration à seuil aux différents marchés pour tenir compte des dynamiques non linéaire, dont les sources ont été discutées plus haut (coûts de transaction, hétérogénéité des investisseurs).…”
Section: Le Modèle Stecmunclassified