Population genetic studies provide insights into the basic biology of arthropod disease vectors by estimating dispersal patterns and their potential to spread pathogens. In wingless vectors, such as ticks, gene flow will be defined in large part by the mobility of their hosts. However, tick behaviors and life cycle strategies can limit their dispersal even on highly mobile hosts and lead to an increase in genetic structure. In this review we synthesize the published literature from three decades of tick population genetic studies. Based on studies from 22 tick species (including representatives from Amblyomma, Bothriocroton, Dermacentor, Ixodes, Ornithodoros, and Rhipicephalus), observed levels of population genetic structure in ticks varied from no structure to very high levels. In about half of the species (including representatives from Amblyomma, Bothriocroton, Dermacentor, and Ornithodoros), tick genetic structure appeared to be determined primarily by the movement capacity of hosts, with low gene flow observed in ticks that use smaller bodied less mobile hosts and high gene flow in ticks using highly mobile hosts. In a number of other species (primarily from Ixodes, Ornithodoros, and Rhipicephalus), behavioral limitations to gene flow appeared to result in greater genetic structure than expected based upon host movement capability alone. We also discuss the strengths and limitations of genetic markers and their applicability to ticks and suggest possible analyses when planning population genetic studies for ticks.